Minimizing Polynomials Over Semialgebraic Sets

نویسندگان

  • Jiawang Nie
  • James W. Demmel
  • Victoria Powers
چکیده

This paper concerns a method for finding the minimum of a polynomial on a semialgebraic set, i.e., a set in R defined by finitely many polynomial equations and inequalities, using the Karush-Kuhn-Tucker (KKT) system and sum of squares (SOS) relaxations. This generalizes results in the recent paper [15], which considers minimizing polynomials on algebraic sets, i.e., sets in R defined by finitely many polynomial equations. Most of the theorems and conclusions in [15] generalize to semialgebraic sets, even in the case where the semialgebraic set is not compact. We discuss the method in some special cases, namely, when the semialgebraic set is contained in the nonnegative orthant R+ or in box constraints [a, b]n. These constraints make the computations more efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Polynomials on Compact Semialgebraic Sets

A basic closed semialgebraic subset S of Rn is defined by simultaneous polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0. We give a short introduction to Lasserre’s method for minimizing a polynomial f on a compact set S of this kind. It consists of successively solving tighter and tighter convex relaxations of this problem which can be formulated as semidefinite programs. We give a new short proo...

متن کامل

Representations of positive polynomials on non-compact semialgebraic sets via KKT ideals

This paper studies the representation of a positive polynomial f(x) on a noncompact semialgebraic set S = {x ∈ R : g1(x) ≥ 0, · · · , gs(x) ≥ 0} modulo its KKT (Karush-KuhnTucker) ideal. Under the assumption that the minimum value of f(x) on S is attained at some KKT point, we show that f(x) can be represented as sum of squares (SOS) of polynomials modulo the KKT ideal if f(x) > 0 on S; further...

متن کامل

Noncommutative Polynomials Nonnegative on a Variety Intersect a Convex Set

By a result of Helton and McCullough [HM12], open bounded convex free semialgebraic sets are exactly open (matricial) solution sets D◦ L of a linear matrix inequality (LMI) L(X) 0. This paper gives a precise algebraic certificate for a polynomial being nonnegative on a convex semialgebraic set intersect a variety, a so-called “Perfect” Positivstellensatz. For example, given a generic convex fre...

متن کامل

Geometry of 3D Environments and Sum of Squares Polynomials

Motivated by applications in robotics and computer vision, we study problems related to spatial reasoning of a 3D environment using sublevel sets of polynomials. These include: tightly containing a cloud of points (e.g., representing an obstacle) with convex or nearly-convex basic semialgebraic sets, computation of Euclidean distances between two such sets, separation of two convex basic semalg...

متن کامل

Sums of Squares, Moment Matrices and Optimization over Polynomials

We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of polynomials. We present these hierarchies of approximations and their main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005