Minimizing Polynomials Over Semialgebraic Sets
نویسندگان
چکیده
This paper concerns a method for finding the minimum of a polynomial on a semialgebraic set, i.e., a set in R defined by finitely many polynomial equations and inequalities, using the Karush-Kuhn-Tucker (KKT) system and sum of squares (SOS) relaxations. This generalizes results in the recent paper [15], which considers minimizing polynomials on algebraic sets, i.e., sets in R defined by finitely many polynomial equations. Most of the theorems and conclusions in [15] generalize to semialgebraic sets, even in the case where the semialgebraic set is not compact. We discuss the method in some special cases, namely, when the semialgebraic set is contained in the nonnegative orthant R+ or in box constraints [a, b]n. These constraints make the computations more efficient.
منابع مشابه
Optimization of Polynomials on Compact Semialgebraic Sets
A basic closed semialgebraic subset S of Rn is defined by simultaneous polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0. We give a short introduction to Lasserre’s method for minimizing a polynomial f on a compact set S of this kind. It consists of successively solving tighter and tighter convex relaxations of this problem which can be formulated as semidefinite programs. We give a new short proo...
متن کاملRepresentations of positive polynomials on non-compact semialgebraic sets via KKT ideals
This paper studies the representation of a positive polynomial f(x) on a noncompact semialgebraic set S = {x ∈ R : g1(x) ≥ 0, · · · , gs(x) ≥ 0} modulo its KKT (Karush-KuhnTucker) ideal. Under the assumption that the minimum value of f(x) on S is attained at some KKT point, we show that f(x) can be represented as sum of squares (SOS) of polynomials modulo the KKT ideal if f(x) > 0 on S; further...
متن کاملNoncommutative Polynomials Nonnegative on a Variety Intersect a Convex Set
By a result of Helton and McCullough [HM12], open bounded convex free semialgebraic sets are exactly open (matricial) solution sets D◦ L of a linear matrix inequality (LMI) L(X) 0. This paper gives a precise algebraic certificate for a polynomial being nonnegative on a convex semialgebraic set intersect a variety, a so-called “Perfect” Positivstellensatz. For example, given a generic convex fre...
متن کاملGeometry of 3D Environments and Sum of Squares Polynomials
Motivated by applications in robotics and computer vision, we study problems related to spatial reasoning of a 3D environment using sublevel sets of polynomials. These include: tightly containing a cloud of points (e.g., representing an obstacle) with convex or nearly-convex basic semialgebraic sets, computation of Euclidean distances between two such sets, separation of two convex basic semalg...
متن کاملSums of Squares, Moment Matrices and Optimization over Polynomials
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of polynomials. We present these hierarchies of approximations and their main...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005